
Package ‘BitSeq’
February 15, 2013

Type Package

Depends Rsamtools, zlibbioc

Imports IRanges

LinkingTo Rsamtools, zlibbioc

Title Transcript expression inference and differential expression analysis for RNA-seq data

Version 1.2.2

Date 2012-11-06

Author Peter Glaus, Antti Honkela and Magnus Rattray

Maintainer Peter Glaus <glaus@cs.man.ac.uk>

Description The BitSeq package is targeted for transcript expression analysis and differential expres-
sion analysis of RNA-seq data in two stage process. In the first stage it uses Bayesian infer-
ence methodology to infer expression of individual transcripts from individual RNA-seq experi-
ments. The second stage of BitSeq embraces the differential expression analysis of transcript ex-
pression. Providing expression estimates from replicates of multiple conditions, Log-
Normal model of the estimates is used for inferring the condition mean transcript expres-
sion and ranking the transcripts based on the likelihood of differential expression.

License Artistic-2.0

biocViews GeneExpression, DifferentialExpression,HighThroughputSequencing, RNAseq

R topics documented:
BitSeq-package . 2
estimateDE . 3
estimateExpression . 5
estimateHyperPar . 7
getDE . 8
getExpression . 9
getGeneExpression . 11
getMeanVariance . 12
loadSamples . 13
parseAlignment . 14

Index 16

1

2 BitSeq-package

BitSeq-package Bayesian Inference of Transcripts from Sequencing data

Description

The BitSeq package is targeted for transcript expression analysis and differential expression analysis
of RNA-seq data in two stage process. In the first stage it uses Bayesian inference methodology
to infer expression of individual transcripts from individual RNA-seq experiments. The second
stage of BitSeq embraces the differential expression analysis of transcript expression. Providing
expression estimates from replicates of multiple conditions, Log-Normal model of the estimates is
used for inferring the condition mean transcript expression and ranking the transcripts based on the
likelihood of differential expression.

Details

Package: BitSeq
Type: Package
Version: 0.3.0
Date: 2012-03-09
License: Artistic-2.0 + other

For details of using the package please refer to the Vignette.

Author(s)

Peter Glaus, Antti Honkela and Magnus Rattray Maintainer: Peter Glaus <glaus@cs.man.ac.uk>

References

Glaus, P., Honkela, A. and Rattray, M. (2012). Identifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioinformatics, 28(13), 1721-1728.

Examples

Not run:
basic use
res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta")
res2 <- getExpression("data-c0b1.sam","ensSelect1.fasta")
res3 <- getExpression("data-c1b0.sam","ensSelect1.fasta")
res4 <- getExpression("data-c1b1.sam","ensSelect1.fasta")

deRes <- getDE(list(c(res1$fn, res2$fn),
c(res3$fn, res4$fn)))

top 10 differentially expressed
head(deRes$pplr[order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE),], 10)

advanced use, keeping the intermediate files
parseAlignment("data-c0b0.sam",
outFile = "data-c0b0.prob",
trSeqFile = "ensSelect1.fasta",
trInfoFile = "data.tr",

estimateDE 3

uniform = TRUE,
verbose = TRUE)

estimateExpression("data-c0b0.prob",
outFile = "data-c0b0",
outputType = "RPKM",
trInfoFile = "data.tr",
MCMC_burnIn = 200,
MCMC_samplesN = 200,
MCMC_samplesSave = 100,
MCMC_scaleReduction = 1.1,
MCMC_chainsN = 2)

cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm")
allConditions = list(cond1Files, cond2Files)

getMeanVariance(allConditions,
outFile = "data.means",
log = TRUE)

estimateHyperPar(allConditions,
outFile = "data.par",
meanFile = "data.means",
verbose = TRUE)

estimateDE(allConditions,
outFile = "data",
parFile = "data.par")

End(Not run)

estimateDE Estimate condition mean expression and calculate Probability of Pos-
itive Log Ratio(PPLR)

Description

Estimate condition mean expression for both experimental conditions using the expression estimates
obtained by estimateExpression

Usage

estimateDE(conditions, outFile, parFile,
lambda0=NULL, samples=NULL, confidencePerc=NULL,
verbose=NULL, norm=NULL, pretend=FALSE)

Arguments

conditions List of vectors, each vector containing names of files containing the expression
samples from a replicate (Can be both technical and biological replicates. How-
ever, in order to get good results biological replicates for each condition are
essential).

4 estimateDE

outFile Prefix for the output files.

parFile File containing estimated hyperparameters.

samples Produce samples of condition mean expression apart from PPLR and confi-
dence.

confidencePerc Percentage for confidence intervals.

verbose Verbose output. Advanced options:

lambda0 Model parameter lambda_0.

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

This function takes as an input expression samples from biological replicates of two or more con-
ditions and hyperparameters over precision distribution inferred by estimateHyperPar. It uses
pseudo-vectors of expression samples from all replicates to infer condition mean expression for
each condition. The condition mean expression samples are used for computation of the Probability
of Positive Log Ratio (PPLR) as well as log2 fold change of expression with confidence intervals
and average condition mean expression for each transcript. Optionally the function can produce
also the samples of condition mean expression for each condition.

Value

.pplr file containing the PPLR, confidence interval, mean log2 fold change, mean
condition mean expressions

.est files containing samples of condition mean expressions for each condition - op-
tional

.estVar file containing samples of inferred variance of the first condition - optional

Author(s)

Peter Glaus

See Also

estimateExpression, estimateHyperPar

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
estimateDE(conditions=list(cond1Files, cond2Files), outFile="data.pplr", parFile="data.par",

norm=c(1.0, 0.999, 1.0017, 0.9998))

End(Not run)

estimateExpression 5

estimateExpression Estimate expression of transcripts

Description

Estimates the expression of transcripts using Markov chain Monte Carlo Algorithm

Usage

estimateExpression(probFile, outFile, parFile=NULL, outputType=NULL, gibbs=NULL,
trInfoFile=NULL, thetaActFile=NULL, MCMC_burnIn=NULL, MCMC_samplesN=NULL,
MCMC_samplesSave=NULL, MCMC_chainsN=NULL, MCMC_dirAlpha=NULL, seed=NULL,
verbose=NULL, pretend=FALSE)

estimateExpressionLegacy(probFile, outFile, parFile=NULL, outputType=NULL, gibbs=NULL,
trInfoFile=NULL, thetaActFile=NULL, MCMC_burnIn=NULL, MCMC_samplesN=NULL,
MCMC_samplesSave=NULL, MCMC_samplesNmax=NULL, MCMC_chainsN=NULL,
MCMC_scaleReduction=NULL, MCMC_dirAlpha=NULL, seed=NULL, verbose=NULL,
pretend=FALSE)

Arguments

probFile File with alignment probabilities produced by parseAlignment

outFile Prefix for the output files.

outputType Output type, possible values: theta, RPKM, counts, tau.

gibbs Use regular Gibbs sampling instead of Collapsed Gibbs sampling.

parFile File containing parameters for the sampler, which can be otherwise specified
by [MCMC*] options. As the file is checked after every MCMC iteration, the
parameters can be adjusted while running.

trInfoFile File containing transcript information. (Necessary for RPKM)

MCMC_burnIn Length of sampler’s burn in period.
MCMC_samplesN

Initial number of samples produced. These are used either to estimate the num-
ber of necessary samples or to estimate possible scale reduction.

MCMC_samplesSave
Number of samples recorder at the end in total.

MCMC_chainsN
Number of parallel chains used. At least two chains will be used.

seed Sets the initial random seed for repeatable experiments.

verbose Verbose output. Advanced options:

thetaActFile File for logging noise parameter thetaAct, which is only generated when regular
Gibbs sampling is used.

MCMC_dirAlpha
Alpha parameter for the Dirichlet distribution.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

6 estimateExpression

MCMC_scaleReduction
(Only for estimateExpressionLegacy.) Target scale reduction, sampler finishes
after this value is met.

MCMC_samplesNmax
(Only for estimateExpressionLegacy.) Maximum number of samples pro-
duced in one iteration. After producing samplesNmax samples sampler finishes.

Details

This function runs Collapse Gibbs algorithm to sample the MCMC samples of transcript expression.
The input is the .prob file containing alignment probabilities which were produced by parseAlignment.
Other optional input is the transcript information file specified by trInfoFile and again produced by
parseAlignment.

The estimateExpression function first runs burn-in phase and initial iterations to estimate the prop-
erties of the MCMC sampling. The initial samples are used to estimate the number of samples
necessary for generating MCMC_samplesSave effective samples in the second, final, stage.

The estimateExpressionLegacy uses less efficient convergence checking via "scale reduction" es-
timation. After an iteration of generating MCMC_samplesN samples, it estimates possible scale
reduction of the marginal posterior variance. While the possible scale reduction is high, it doubles
the MCMC_samplesN and starts new iteration. This process is repeated until desired value of
MCMC_scaleReduction is met, or MCMC_samplesNmax samples are generated.

The sampling algorithm can be configured via parameters file parFile or by using the MCMC*
options. The advantage of using the file (at least an existing blank text document) is that by changing
the configuration values while running, the new values do get updated after every iteration.

Value

.thetaMeans file containing average relative expression of transcripts θ

Either one of sample files based on output type selected:

.rpkm for RPKM expression

.counts for estimated read counts

.theta for relative expression of fragments

.tau for relative expression of transcripts

Author(s)

Peter Glaus

See Also

parseAlignment

Examples

Not run:
estimateExpression(probFile="data.prob", outFile="data", outputType="RPKM",

trInfoFile="data.tr", seed=47, verbose=TRUE)
estimateExpression(probFile="data-c0b0.prob", outFile="data-c0b0", outputType="RPKM",

trInfoFile="data.tr", MCMC_burnIn=200, MCMC_samplesN=200, MCMC_samplesSave=100,
MCMC_chainsN=2 , MCMC_dirAlpha=NULL)

estimateExpression(probFile="data.prob", outFile="data-G", gibbs=TRUE,

estimateHyperPar 7

parFile="parameters1.txt", outputType="counts", trInfoFile="data.tr")
estimateExpressionLegacy(probFile="data-c0b0.prob", outFile="data-c0b0", outputType="RPKM",

trInfoFile="data.tr", MCMC_burnIn=200, MCMC_samplesN=200, MCMC_samplesSave=100,
MCMC_samplesNmax=10000, MCMC_scaleReduction=1.2, MCMC_chainsN=2 , MCMC_dirAlpha=NULL)

End(Not run)

estimateHyperPar Estimate hyperparameters for DE model using expression samples and
joint mean expression

Description

Estimate hyperparameters for the Differential Expression model using expression samples and pro-
duced smoothed values of the hyperparameters depending on joint mean expression.

Usage

estimateHyperPar(outFile, conditions=NULL, paramsInFile=NULL,
meanFile=NULL, force=TRUE, exThreshold=NULL, lambda0=NULL,

paramsAllFile=NULL, smoothOnly=NULL, lowess_f=NULL, lowess_steps=NULL, verbose=NULL,
veryVerbose=NULL, norm=NULL, pretend=FALSE)

Arguments

outFile Name of the output file.
conditions List of vectors, each vector containing names of files containing the expression

samples from a replicate (Can be both technical and biological replicates. How-
ever, in order to get good results biological replicates for each condition are
essential).

paramsInFile File produced by previous run of the function using paramsAllFile flag.
meanFile Name of the file containing joint mean and variance.
exThreshold Threshold of lowest expression for which the estimation is done.
paramsAllFile Name of the file to which to store all parameter values generated prior to lowess

smoothing(good for later, more careful re-smoothing.)
smoothOnly Input file contains previously sampled hyperparameters which should smoothed

only.
verbose Verbose output. Advanced options:
force Force smoothing hyperparameters, otherwise program might not produce pa-

rameters file at the end.
lambda0 Model parameter lambda0.
lowess_f Parameter F for lowess smoothing specifying amount of smoothing.
lowess_steps Parameter Nsteps for lowess smoothing specifying number of iterations.
veryVerbose More verbose output.
norm Vector of (multiplicative) normalization constants for library size normalization

of expression samples. Number of constants has to match the number of expres-
sion samples files.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

8 getDE

Value

.par file containing the smoothed hyperparameters

.ALLpar file containing all hyperparameter samples prior to smoothing - optional

Author(s)

Peter Glaus

See Also

estimateDE

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
estimateHyperPar(conditions=list(cond1Files, cond2Files), outFile="data.par",

meanFile="data.means", verbose=TRUE)

estimateHyperPar(conditions=list(cond1Files, cond2Files), outFile="data.par",
meanFile="data.means", paramsFile="data.ALLpar", force=FALSE)

estimateHyperPar(outFile="data.par", paramsInFile="data.ALLpar", smoothOnly=TRUE)

End(Not run)

getDE Estimate Probability of Positive Log Ratio

Description

Using expression samples, program estimates the probability of differential expression for each
transcript.

Usage

getDE(conditions, outPrefix=NULL, samples=FALSE, trInfoFile=NULL,
norm=NULL, pretend=FALSE)

Arguments

conditions List of vectors, each vector containing names of files containing the expression
samples from a replicate (Can be both technical and biological replicates. How-
ever, in order to get good results biological replicates for each condition are
essential).

outPrefix Prefix for the output files. Otherwise program creates temporary files, which are
only valid for current R session.

samples Produce samples of condition mean expression apart from PPLR and confi-
dence.

trInfoFile Transcript information file providing the names of transcripts.

getExpression 9

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

This function uses estimateHyperPar function to estimate the hyperparameters for DE model and
the uses estimateDE function to infer the condition mean expression and calculate Probability of
Positive Log Ratio.

Value

list with items:

pplr DataFrame with PPLR and other statistics

fn list with file names for PPLR file, fn$pplr, and condition mean expression sam-
ples, fn$samplesFiles (only with option samples=TRUE)

Author(s)

Peter Glaus

See Also

getExpression, estimateHyperPar, estimateDE

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
deRes <- getDE(conditions=list(cond1Files, cond2Files))
top 10 DE transcripts
head(deRes$pplr[order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE),], 10)

End(Not run)

getExpression Estimate transcript expression

Description

Estimate expression of transcripts. Starting from alignment and reference files function function
handles the entire process of expression analysis resulting in transcript expression means and stan-
dard deviation together with file containing all the expression samples.

Usage

getExpression(alignFile, trSeqFile, outPrefix=NULL, uniform=TRUE, type="RPKM",
log=FALSE, pretend=FALSE, ...)

10 getExpression

Arguments

alignFile File containing read alignments.

trSeqFile File containing transcript sequence in FASTA format.

outPrefix Prefix for the output files. Otherwise program creates temporary files, which are
only valid for current R session.

uniform Use uniform read distribution.

type Output type, possible values: theta, RPKM, counts, tau.

log Report mean and expression of logged expression samples.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

... Other arguments are passed to estimateExpression, please see estimateExpressionfor
more details

Details

This function uses parseAlignment function to compute alignment probabilities and the function
estimateExpression to produce the expression samples.

In case of non-uniform read distribution, it first produces approximate estimates of expression us-
ing uniform distribution and uses these estimates in to compute read distribution bias-corrected
alignment probabilities, which are used in the estimateExpression function to produce expression
estimates.

Value

list with items:

exp DataFrame with transcript expression mean and standard deviation

fn name of the file containing all the expression samples

Author(s)

Peter Glaus

See Also

getDE, estimateExpression, parseAlignment

Examples

Not run:
res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta", MCMC_chains=2,

MCMC_samplesN=100)

End(Not run)

getGeneExpression 11

getGeneExpression Calculate gene expression or relative within gene expression

Description

Calculate either gene expression or relative within gene expression using transcript expression sam-
ples and transcript information file.

Usage

getGeneExpression(sampleFile, outFile=NULL, trInfoFile=NULL, pretend=FALSE)
getWithinGeneExpression(sampleFile, outFile=NULL, trInfoFile=NULL, pretend=FALSE)

Arguments

sampleFile File containing the transcript expression samples.

outFile Name of the output file. If not used, function uses temporary file.

trInfoFile Transcript information file. If not used, function tries file with same name and
extension tr. The file has to contain valid gene transcript mapping, see detail
below.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

The getGeneExpression function takes samples of transcript expression and produces file with
expression of genes by adding up transcript expression.

The getWithinGeneExpression function takes samples of transcript expression and produces file
with relative within gene expression samples for each transcript.

Both function need valid transcript information file which contains gene transcript mapping. The
first line should contain "# M <numberOfTranscripts>" and the following numberOfTranscripts
lines have to contain "<geneName> <transcriptName> <transcriptLength>". Example is provided
in extdata/ensSelect1.tr. Please note that the transcript information file automatically generated
from alignment files are not sufficient because SAM/BAM files do not include gene names. We
hope to provide more convenient way in future versions of BitSeq.

Value

Name of file containing the new expression samples.

Author(s)

Peter Glaus

See Also

getExpression

12 getMeanVariance

Examples

setwd(system.file("extdata",package="BitSeq"))
gene expression
getGeneExpression("data-c0b1.rpkm", "data-c0b1-GE.rpkm", "ensSelect1.tr")
gExpSamples <- loadSamples("data-c0b1-GE.rpkm")
gExpMeans <- rowMeans(as.data.frame(gExpSamples))
gExpMeans

within gene expression
wgeFN <- getWithinGeneExpression("data-c0b1.rpkm", trInfoFile="ensSelect1.tr")
wgExpSamples <- loadSamples(wgeFN)
wgExpMeans <- rowMeans(as.data.frame(wgExpSamples))
head(wgExpMeans)

getMeanVariance Calculate mean and variance of expression samples

Description

Calculate mean and variance of expression samples or log-expression samples

Usage

getMeanVariance(sampleFiles, outFile, log=NULL, type=NULL, verbose=NULL,
norm=NULL, pretend=FALSE)

Arguments

sampleFiles Vector of one or more files containing the expression samples.

outFile Name of the output file.

log Use logged values.

type Type of variance, possible values: sample,sqDif for sample variance or squared
difference.

verbose Verbose output.

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

The getMeanVariance function computes means and variances of MCMC expression samples.
These can be computed either from single file or from multiple files using sample variance. Variance
of two experiments (i.e. technical or biological replicates) can be estimated also by using sqDif
option for type which specify the computation of the average square distance between the samples
from two sets.

loadSamples 13

Value

.means File containing means (first column) and variance (second column) for each
transcript (or row in the sample files)

Author(s)

Peter Glaus

See Also

estimateExpression

Examples

setwd(system.file("extdata",package="BitSeq"));
sampleFileNames = c("data-c1b0.rpkm","data-c1b1.rpkm")
getMeanVariance(sampleFiles=sampleFileNames, outFile="data-c1.Lmean", log=1, norm=c(1.0017, 0.9998))

loadSamples Loading and saving expression samples

Description

Functions for loading expression samples into DataFrame and saving samples from DataFrame into
a file.

Usage

loadSamples(fileName, trInfoFile=NULL)
writeSamples(data, fileName)

Arguments

fileName Name of the file with samples or to which the samples are written.

data DataFrame with samples written to the file.

trInfoFile Transcript information file which can be used to name the rows.

Details

The loadSamples function load samples from the specified file into a DataFrame. If the transcript
information file is provided, the transcript names are use as row names.

The writeSamples function can save samples from a DataFrame into a file in format which is valid
for BitSeq and can be used in other functions.

Value

DataFrame Containing the expression samples

Author(s)

Peter Glaus

14 parseAlignment

See Also

estimateExpression

Examples

Not run:
samples1<-loadSamples("data-c0b1.rpkm")
writeSamples(samples1,"new-c0b1.rpkm")

End(Not run)

parseAlignment Compute probabilities of alignments

Description

Compute probability of alignments and save them into .prob file.

Usage

parseAlignment(alignFile, outFile, trSeqFile, inputFormat=NULL, trInfoFile=NULL,
expressionFile=NULL, readsN=NULL, uniform=TRUE, lenMu=NULL, lenSigma=NULL,
verbose=NULL, veryVerbose=NULL, pretend=FALSE)

Arguments

alignFile File containing read alignments.

outFile Name of the output file.

inputFormat Input format: possible values SAM, BAM.

trInfoFile If transcript reference sequence information is contained within SAM file, pro-
gram will write this information into <trInfoFile>, otherwise it will look for this
information in the <trInfoFile>.

trSeqFile File containing transcript sequence in FASTA format.

expressionFile Transcript relative expression estimates — for better non-uniform read distribu-
tion estimation.

readsN Total number of reads. This is usually not necessary if SAM/BAM contains also
reads with no valid alignments.

uniform Use uniform read distribution.

lenMu Set mean of log fragment length distribution. lfrag ∼ LogNormal(µ, σ2)

lenSigma Set σ2 (or variance) of log fragment length distribution. lfrag ∼ LogNormal(µ, σ2)

verbose Verbose output.

veryVerbose Very verbose output.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

parseAlignment 15

Details

This function uses the alignments and reference file to assign probability to each alignment. It uses
either bias-corrected or uniform model for the read distribution, assumes Log-Normal distribution of
fragment lengths for pair-end read data and uses quality scores and mismatches to assign probability
for every alignment of a read (or fragment) to a transcript.

Value

.prob file containing the alignment probabilities

.tr file containing reference transcript names, lengths and effective lengths - op-
tional

Author(s)

Peter Glaus

See Also

estimateExpression

Examples

Not run:
parseAlignment(alignFile="data.sam", outFile="data.prob",

trSeqFile="trReference.fa" ,trInfoFile="data.tr")

End(Not run)

Index

∗Topic DE model hyperparameters
estimateHyperPar, 7

∗Topic alignment probability
parseAlignment, 14

∗Topic differential expression
estimateDE, 3
getDE, 8

∗Topic expression mean
getMeanVariance, 12

∗Topic expression samples
loadSamples, 13

∗Topic gene expression
getGeneExpression, 11

∗Topic package
BitSeq-package, 2

∗Topic transcript expression
estimateExpression, 5
getExpression, 9

BitSeq (BitSeq-package), 2
BitSeq-package, 2

estimateDE, 3, 8, 9
estimateExpression, 3, 4, 5, 10, 13–15
estimateExpressionLegacy

(estimateExpression), 5
estimateHyperPar, 4, 7, 9

getDE, 8, 10
getExpression, 9, 9, 11
getGeneExpression, 11
getMeanVariance, 12
getWithinGeneExpression

(getGeneExpression), 11

loadSamples, 13

parseAlignment, 6, 10, 14

writeSamples (loadSamples), 13

16

	BitSeq-package
	estimateDE
	estimateExpression
	estimateHyperPar
	getDE
	getExpression
	getGeneExpression
	getMeanVariance
	loadSamples
	parseAlignment
	Index

